您好,欢迎来到污水处理压滤机网站:一站式带式压滤污泥脱水加药顺序平台

氨氮废水处理如何快速处理(污水氨氮去除方法有哪些)

作者:安尼      发布时间:2021-09-03      浏览量:50140
氨氮废水处理如何快速处理废水零排放方案采用以下工艺处理氨氮废水:1、折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的nh3-n氧化成n2的化学脱氮工艺。2、空气吹脱法去除氨氮吹脱是使水作为不连续相与空气接触,利用水中组分的

氨氮废水处理如何快速处理



废水零排放方案采用以下工艺处理氨氮废水:1、折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的nh3-n氧化成n2的化学脱氮工艺。2、空气吹脱法去除氨氮吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子和游离氨(nh3)的状态保持平衡而存在3、氧化还原工艺该方法当中引入了一种新型药剂氨氮去除剂,同时该氨氮去除剂具有很强的氧化还原作用。4、生物法去除氨氮生物法去除氨氮是指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气。


污水氨氮去除方法有哪些


水中氨氮的去除方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择交换吸附、空气吹脱及折点氯化等。
  1.生物硝化与反硝化
  (一) 生物硝化
  在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。生物硝化的反应过程为:
  由上式可知:
  (1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;
  (2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
  影响硝化过程的主要因素有:
  (1)pH值 当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;
  (2)温度 温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;
  (3)污泥停留时间 硝化菌的增殖速度很小,其最大比生长速率为 =0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间 必须大于硝化菌的最小世代时间 。在实际运行中,一般应取 >2 ,或 >2 ;
  (4)溶解氧 氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;
  (5)BOD负荷
硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
  (二) 生物反硝化
  在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为:
  6NO3-十2CH3OH→6NO2-十2CO2十4H2O
  6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-
  由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。
  影响反硝化的主要因素:
  (1)温度 温度对反硝化的影响比对其它废水生物处理过程要大些。一般,以维持20~40℃为宜。苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;
  (2)pH值 反硝化过程的pH值控制在7.0~8.0;
  (3)溶解氧 氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);
  (4)有机碳源
当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
  2.沸石选择交换吸附
  沸石是一种硅铝酸盐,其化学组成可表示为(M2+2M+)O.Al2O3.mSiO2nH2O
(m=2~10,n=0~9),式中M2+代表Ca2+、Sr2+等二价阳离子,M+代表Na+、K+等一价阳离子,为一种弱酸型阳离子交换剂。在沸石的三维空间结构中,具有规则的孔道结构和空穴,使其具有筛分效应,交换吸附选择性、热稳定性及形稳定性等优良性能。天然沸石的种类很多,用于去除氨氮的主要为斜发沸石。
  斜发沸石对某些阳离子的交换选择性次序为:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。交换吸附饱和的拂石经再生可重复利用。
  溶液pH值对沸石除氨影响很大。当pH过高,NH4+向NH3转化,交换吸附作用减弱;当pH过低,H+的竞争吸附作用增强,不利于NH4+的去除。通常,进水pH值以6~8为宜。当处理合氨氮10~20mg/L的城市进水时,出水浓度可达lmg/L以下。穿透时通水容积约100~150床容。沸石的工作交换容量约0.4×10-3n-1mol/g左右。
  吸附铵达到饱和的沸石可用5g/L的石灰乳或饱和石灰水再生。再生液用量约为处理水量的3~5研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。针对石灰再生的结垢问题,亦有采用2氯化钠溶液作再生液的,此时再生液用量较大。再生时排出的高浓度合氨废液必须进行处理,其处理方法有:
  (1)空气吹脱 吹脱的NH3或者排空,或者由量H2S04吸收作肥料;
  (2)蒸气吹脱 冷凝液为1氨溶液,可用作肥料;
  (3)电解氧化(电氯化) 将氨氧化分解为N2。

生物法机理——生物硝化和反硝化机理:在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用 ,将污水中的氨氮氧化为亚硝酸盐或硝酸盐 ;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。因而,污水的生物脱氮包括硝化和反硝化两个阶段。生物脱氮工艺流程见图1 。
硝化反应是将氨氮转化为硝酸盐的过程 ,包括两个基本反应步骤 : 由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源) 。
生物脱氮法可去除多种含氮化合物,总氮去除率可达7095次污染小且比较经济,因此在国内外运用最多。但缺点是占地面积大,低温时效率低。

水中的氨氮的含量是养殖水体中主要的检测指标,也是重要环境水体检测指标,氨氮是含氮有机物受微生物作用的分解产品,某些工业废水、养殖水中过多的饲料和鱼、虾等水中生物的排泄物累积都会产大量的氨氮。环凯的氨氮检测试剂盒/氨氮快速测定试纸,能够快速、方便对水体中的氨氮含量进行分析。


污水中氨氮去除的最好方法是什么


生物法机理——生物硝化和反硝化机理:在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用 ,将污水中的氨氮氧化为亚硝酸盐或硝酸盐 ;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。因而,污水的生物脱氮包括硝化和反硝化两个阶段。生物脱氮工艺流程见图1 。
硝化反应是将氨氮转化为硝酸盐的过程 ,包括两个基本反应步骤 : 由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源) 。
生物脱氮法可去除多种含氮化合物,总氮去除率可达7095次污染小且比较经济,因此在国内外运用最多。但缺点是占地面积大,低温时效率低。

采用生物脱氮方法
原理就是 水中的氨氮在氧气条件下 通过硝化细菌进行有氧呼吸对氨氮进行硝化作用 将氨态氮氧化成硝态氮和亚硝态氮 再在缺氧条件下通过反消化细菌 通过反消化作用 将硝态氮和亚硝态氮还原成氮气 去除
一体化污水处理设备 适合生活污水

当然是生物方法,通过提高污泥浓度,加强曝气,强化硝化细菌的作用,从而实现脱氨氮

浓度高可以先吹脱,再生物
浓度低可以直接生物
还要看有没有其他对生物有毒害的成分

称取3.819g经100℃干燥过的优纯级的氯化铵溶于水,配置成1000毫升的溶液。此为标准储备液。标准液是将标准储备液稀释100倍,此溶液每毫升含氨氮0.010mg。

根据氨氮浓度来确定。


废水氨氮处理方法有哪些?可以用药剂去除吗


吹脱法:将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱。将氨氮废水pH调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。
空气吹脱法的效率虽比蒸汽法的低,但能耗低、设备简单、操作方便。在氨氮总量不高的情况下,采用空气吹脱法比较经济,同时可用硫酸作吸收剂吸收吹脱出的氨氮,生成的硫酸铵可制成化肥。但在大规模的氨吹脱-汽提塔生产过程中,产生水垢是较棘手的问题。通过安装喷淋水系统可有效解决软质水垢问题,可对硬质水垢,喷淋装置也无法消除。此外,低温时氨氮去除率低,吹脱的气体形成二次污染。尽管吹脱法可以将大部分氨氮脱除,但处理后的废水中氨氮仍然高达100mg/L以上,无法直接排放,还需要后续深度处理。
化学沉淀法(磷酸铵镁沉淀法):
亦是向氨氮污水中投加含Mg2+和PO43-的药剂,使污水中的氨氮和磷以鸟粪石(磷酸铵镁)的形式沉淀出来,同时回收污水中的氮和磷。
其工艺设计操作相对简单,反应稳定,受外界环境影响小,抗冲击能力强,脱氮率高效果明显,生成的磷酸铵镁可作为无机复合肥使用,因此解决了氮的回收和二次污染的问题,具有良好的经济和环境效益。磷酸铵镁沉淀法适用于处理氨氮浓度较高的工业废水磷酸铵镁沉淀法处理氨氮废水的适宜条件是:pH约为9.0,n(P)∶n(N)∶n(Mg)在1∶1∶1.2左右,磷酸铵镁沉淀法的脱氮率能维持在较高水平,普遍能够达到90 上。
低浓度氨氮工业废水处理技术:
由于技术和处理成本方面的原因,许多企业在排放污水时仅对COD进行深度处理,往往忽略了对低浓度氨氮的处理。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵、氯化铵等。
氨氮是造成水体富营养化的重要因素之一,对这类污水进行回收利用时还会对管道中的金属产生腐蚀作用,缩短设备和管道的寿命,增加维护成本。目前工业上常用于处理低浓度氨氮的技术主要有吸附法、折点氯化法、生物法、膜技术等。
吸附法:吸附是一种或几种物质(称为吸附物)的浓度在另一种物质(称为吸附剂)表面上自动发生变化的过程,其实质是物质从液相或气相到固体表面的一种传质现象。
吸附法是处理低浓度氨氮废水较有发展前景的方法之一。吸附法常利用多孔性固体作为吸附剂,处理低浓度氨氮废水较为理想的是离子交换吸附法,它属于交换吸附方法的一种,利用吸附剂上的可交换离子与废水中的NH4+发生交换并吸附NH3分子以达到去除水中氨的目的,是可逆过程,离子间的浓度差和吸附剂对离子的亲和力为吸附过程提供动力。
一般只适用于低浓度氨氮废水,而对于高浓度的氨氮废水,使用吸附法会因吸附剂更换频繁而造成操作困难,因此需要结合其他工艺来协同完成脱氮过程。
折点氯化法:
折点氯化法是污水处理工程中常用的一种脱氮工艺,其原理是将氯气通入氨氮废水中达到某一临界点,使氨氮氧化为氮气的化学过程。其处理效率高且效果稳定,去除率可达100 该方法不受盐含量干扰,不受水温影响操作方便,有机物含量越少时氨氮处理效果越好,不产生沉淀,初期投资少,反应迅速完全能对水体起到杀菌消毒的作用。
但折点氯化法仅适用于低浓度废水的处理,因此多用于氨氮废水的深度处理。该方法的缺点是:液氯消耗量大,费用较高,且对液氯的贮存和使用的安全要求较高,反应副产物氯胺和氯代有机物会对环境造成二次污染。
生物法:
废水中的氨氮在各种微生物作用下,通过硝化、反硝化等一系列反应最终生成氮气,从而达到去除的目的,对于可生化性高的废水(BOD/COD>0.3),氨氮可通过生物法脱除。
用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素。
生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,缺点占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。此外,高浓度的氨氮对生物法硝化过程具有抑制作用,因此当处理氨氮废水的初始质量浓度<300 mg/L时,采用生物法效果较好。
新型生物脱氮技术之短程硝化反硝化技术:
短程硝化反硝化与传统生物脱氮相比具有以下优点:对于活性污泥法,可节省25 供氧量,降低能耗,节省碳源,一定情况下可提高总氮的去除率,提高了反应速率,缩短了反应时间,减少反应器容积。但由于亚硝化细菌和硝化细菌之间关系紧密,每个影响因素的变化都同时影响到两类细菌,而且各个因素之间也存在着相互影响的关系,这使得短程硝化反硝化的条件难以控制。
厌氧氨氧化技术:厌氧氨氧化是指在缺氧或厌氧条件下,微生物以NH4+为电子受体,以NO2- 或NO3- 为电子供体进行的NH4+、NO2- 或NO3- 转化成N2的过程。
厌氧氨氧化技术可以大幅度地降低硝化反应的充氧能耗,免去反硝化反应的外源电子供体,可节省传统硝化反硝化过程中所需的中和试剂,产生的污泥量少。但目前为止,其反应机理、参与菌种和各项操作参数均不明确。
膜技术之反渗透技术:反渗透技术是在高于溶液渗透压的压力作用下,借助于半透膜对溶质的选择截留作用,将溶质与溶剂分离的技术,具有能耗低、无污染、工艺先进、操作维护简便等优点。
利用反渗透技术处理氨氮废水的过程中,设备给予足够的压力,水通过选择性膜析出,可用作工业纯水,而膜另一侧氨氮溶液的浓度则相应增高,成为可以被再次处理和利用的浓缩液。在实际操作中,施加的反渗透压力与溶液的浓度成正比,随着氨氮浓度的升高,反渗透装置所需的能耗就越高,而效率却是在下降。
电渗析法:是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从电解质溶液中分离出来的过程。电渗析法可高效地分离废水中的氨氮,并且该方法前期投入小,能量和药剂消耗低,操作简单,水的利用率高,无二次污染副产物。

化学法处理含浮选药剂废水的方法有五种。 (1)氧化分解:采用的氧化剂 液氯、漂白粉、次氯酸钠等进行氧化分解。其作用是:“活性氯”破坏废水中的黄药,使之被氧化成无毒的硫酸盐,处理时ph以7~8.5为宜。处理效果好坏,主要取决于试剂用量的掌握适当。投药量太少,处理不完全;投药量过多,净化液中有“活性氯”存在。 (2)臭氧化法 处理黄药效果较好,而且无“活性氯”存在。但电耗大,至今未能广泛用于生产。 (3)电解法 用白金作电极,直流电压为0.5v,电流为40ma进行电解(分解黄药)。 (4)置换回收法 向含有黄药、并有重金属生成氢氧化物沉淀的废水中,在控制ph值条件下加入硫化钠,可将黄药置换出来加以回收利用。 (5)酸化或碱化法 在尾矿库入口废水中投加硫酸(按100~200mg/l),可破坏选矿废水中黄药,使其出水水质达到国家排放要求《地面水三级排放标准》。也可在尾矿库中投加石灰,随金属氢氧化物沉淀而吸附浮选药剂一起带入库底淤泥中。


污水厂氨氮的处理方法有哪些?


污水一级处理采用物理方法,如筛分过滤、沉淀等,去除污水中不溶性悬浮物和浮物。污水二级处理主要是利用生物处理方法,即通过微生物代谢过程中的物质转化,将各种复杂有机物氧化降解为简单物质。生物处理对污水质量、水温、水中溶解氧含量、pH值等有一定的要求。
污水的第三阶段处理是以一级和二级处理为基础,采用混凝、过滤、离子交换、反渗透等物理化学方法去除污水中的不溶性有机物、磷、氮等营养物质。污水中污染物的组成非常复杂,往往需要上述方法的结合才能满足处理要求。
污水的一级处理是预处理,二次处理是主体,处理后的污水一般可以达到排放标准,三级处理是先进的处理,出水水质良好,甚至可以达到饮用水质量标准,但处理费用高,除一些极端缺水的国家和地区外,应用较少。目前,我国许多城市正准备建设和扩建二次污水处理厂,以解决日益严重的水污染问题。

要是处理生活污水的话除臭可以用微生物除臭,脱氮的话用消化和反消化去除,最常用的处理方法,也是最省钱的